當(dāng)前位置:首頁 > 百科知識 > 儲能 > 正文

儲能效率

儲能效率是指儲能元件儲存起來的電量與輸入能量的比。

     ont-family: sans-serif; font-size: 14px; line-height: 1.75em; text-indent: 2em;">儲能技術(shù)主要分為物理儲能(如抽水儲能、壓縮空氣儲能、飛輪儲能等)、化學(xué)儲能(如鉛酸電池、氧化還原液流電池、鈉硫電池、離子電池)和電磁儲能(如超導(dǎo)電磁儲能、超級電容器儲能等)三大類。

argin: 5px 0px; line-height: 1.75em; font-size: 14px; font-family: sans-serif; text-indent: 2em;">蓄電池儲能效率關(guān)系到蓄電池的壽命和成本,要提高蓄電池儲能效率就要了解儲能效率都受哪些因素的影響,除了蓄電池自身構(gòu)造會影響其儲能效率,如元件材質(zhì)、制造工藝、電解液配置等,蓄電池儲能效率也與充電狀態(tài)、充放電電流、充電電壓、環(huán)境溫度等一些外部因素有很大關(guān)系。

儲能技術(shù)

儲能技術(shù)主要分為物理儲能(如抽水儲能、壓縮空氣儲能、飛輪儲能等)、化學(xué)儲能(如鉛酸電池、氧化還原液流電池、鈉硫電池、鋰離子電池)和電磁儲能(如超導(dǎo)電磁儲能、超級電容器儲能等)三大類。根據(jù)各種儲能技術(shù)的特點,飛輪儲能、超導(dǎo)電磁儲能和超級電容器儲能適合于需要提供短時較大的脈沖功率場合,如應(yīng)對電壓暫降和瞬時停電、提高用戶的用電質(zhì)量,抑制電力系統(tǒng)低頻振蕩、提高系統(tǒng)穩(wěn)定性等;而抽水儲能、壓縮空氣儲能和電化學(xué)電池儲能適合于系統(tǒng)調(diào)峰、大型應(yīng)急電源、可再生能源并入等大規(guī)模、大容量的應(yīng)用場合。

蓄電池儲能效率測試系統(tǒng)的設(shè)計

蓄電池儲能效率測試系統(tǒng)的基本原理見圖,系統(tǒng)的主要元件有:單相智能電表、充電器、逆變器、單片機(jī)、

負(fù)載等。工作過程可以簡要的描述為:充電開始時,電表接在交流電源和蓄電池的充電模塊之間,通過電表可以直接讀出蓄電池充電完成消耗的電能,這部分電能包括兩部分:充電器以及各種開關(guān)器件損耗的電能、蓄電池內(nèi)阻耗能和儲存的電能。當(dāng)充電完成時,由充電模塊向控制模塊發(fā)出充電完成信號(持續(xù)高電平),控制模塊此時將電表數(shù)據(jù)送至單片機(jī),由單片機(jī)將數(shù)據(jù)記錄并顯示出來。然后控制模塊向充電模塊發(fā)出指令使充電電路停止工作,并向逆變模塊發(fā)出指令使逆變電路工作,向負(fù)載供電。此時將電表接在逆變器與負(fù)載之間,通過電表可以直接讀出負(fù)載從蓄電池獲取的電能,由于電表只能檢測220V交流電,所以從電表獲取的電能實際上包含了逆變器消耗電能和負(fù)載消耗的電能。

當(dāng)放電完成時,由逆變模塊向控制模塊發(fā)出放電終止信號,控制模塊此時將電表發(fā)送過來的電量數(shù)據(jù)送至單片機(jī),由單片機(jī)將數(shù)據(jù)記錄并顯示出來。然后控制模塊向逆變模塊發(fā)出指令使逆變電路停止工作,并斷開負(fù)載??紤]到蓄電池充電和放電的不同步,單相電度表即可作為充電電能計量也可用作放電電能計量。若是要再次檢測,重復(fù)以上的操作。

蓄電池儲能效率影響因素

蓄電池儲能效率關(guān)系到蓄電池的壽命和成本,要提高蓄電池儲能效率就要了解儲能效率都受哪些因素的影響,除了蓄電池自身構(gòu)造會影響其儲能效率,如元件材質(zhì)、制造工藝、電解液配置等,蓄電池儲能效率也與充電狀態(tài)、充放電電流、充電電壓、環(huán)境溫度等一些外部因素有很大關(guān)系。

充電狀態(tài)的影響

充電狀態(tài)是指蓄電池在充電時達(dá)到的狀態(tài),簡而言之滿充時的充電狀態(tài)為100%。根據(jù)國家的相關(guān)規(guī)定,在充電狀態(tài)不同時對蓄電池的儲能效率有不同的標(biāo)準(zhǔn),在充電狀態(tài)小于50%時,要求蓄電池儲能效率大于95%;充電狀態(tài)在75%的時候,要求蓄電池儲能效率大于90%;充電狀態(tài)在90%時,要求蓄電池儲能效率大于85%。

充放電電流的影響

由蓄電池特性可知,在對蓄電池進(jìn)行放電時,大電流放電蓄電池實際釋放的能量小于小電流放電時蓄電池釋放的能量,這說明蓄電池的儲能效率與放電率有很大的關(guān)系。

通過圖[1]能夠看出蓄電池的庫倫效率在電流變大時也不斷增加,這是由于當(dāng)大電流充放電時,會縮短蓄電池

的充放電時間,所以蓄電池由于自放電而損失的能量就比較小。而充電效率和放電效率,在電流比較小的時候,兩者都會隨著電流的增大不斷的增大,當(dāng)超過某一時刻后,兩者就會隨著電流的增大而減小,這是因為電流過大時電池內(nèi)部的極化現(xiàn)象就會加劇,蓄電池的功率損耗就會變大,進(jìn)而使得能量損耗的增加,所以導(dǎo)致蓄電池的效率下降。所以在選擇充放電電流的時候不能盲目選擇,電流過大或者過小都會降低蓄電池的效率,要根據(jù)實際的情況對蓄電池充放電電流進(jìn)行選擇。

充電電壓的影響

充電效率實際也就是把硫酸鉛轉(zhuǎn)變成二氧化鉛和鉛活性物質(zhì)的時消耗的電量和充電過程中輸入到蓄電池電

量的比值,在此假設(shè)蓄電池沒有自放電,那么蓄電池的儲能效率就等于充電效率乘以放電效率。而在充電過程中消耗的電能主要由于蓄電池內(nèi)析氣和腐蝕等一些副反應(yīng)。閥控式鉛酸蓄電池的充電效率較高,充電效率和荷電狀態(tài)有很大關(guān)系,一直到蓄電池滿電荷之前蓄電池的充電效率都會很高,在接近完全充滿電的時候由于產(chǎn)生過充電反應(yīng),所以充電效率就會降低。以單體蓄電池為例,其額定電壓一般為2.0V,如圖給出了在恒壓充電方式下充電電壓和儲能效率的關(guān)系曲線,可以看出,在電壓較小的時候隨著充電電壓的升高儲能效率會增加,當(dāng)超過一定值時由于副反應(yīng)的發(fā)生,儲能效率會下降。

環(huán)境溫度的影響

將蓄電池的充電方式設(shè)置為恒壓限流,在環(huán)境溫度小于10℃時,會對蓄電池內(nèi)的電流擴(kuò)散造成影響使其降低,但是對交換電流的密度影響不大,所以加劇了蓄電池內(nèi)部濃度差的極化,導(dǎo)致了儲能效率的減小。低溫條件下,對于放電過程中產(chǎn)生的,充電時其溶解的速度會降到很小,而且上的空隙不能夠使電解液保持飽和度最小,對充電的化學(xué)反應(yīng)有一定的阻礙力,最終導(dǎo)致的結(jié)果就會使儲能效率下降。

其他儲能效率

飛輪儲能

近年來,飛輪儲能技術(shù)取得突破性進(jìn)展是基于下述三項技術(shù)的飛速發(fā)展:一是高能永磁及高溫超導(dǎo)技術(shù)的出現(xiàn);二是高強(qiáng)纖維復(fù)合材料的問世;三是電力電子技術(shù)的飛速發(fā)展。 利用超導(dǎo),我們可以把具有一定質(zhì)量的飛輪放在永磁體上邊,飛輪兼作電機(jī)轉(zhuǎn)子。當(dāng)給電機(jī)充電時,飛輪增速儲能,變電能為機(jī)械能;飛輪降速時放能,變機(jī)械能為電能。儲能飛輪裝置示例:超導(dǎo)體是由鋇釔銅合金制成,并用液氮冷卻至77K,飛輪腔抽至10-8托的真空度(托為真空度單位,1Torr(托)=133.332Pa),這種飛輪能耗極小,每天僅耗掉儲能的2%。

1994年,美國阿貢(ANL)國家實驗室用碳纖維試制一個儲能飛輪:直徑38厘米,質(zhì)量為 11千克,采用超導(dǎo)磁懸浮,飛輪線速度達(dá)1000米/秒。它儲的能量可將10個100瓦燈泡點燃2~5小時。該實驗室目前正在開發(fā)儲能為50千瓦小時的儲能輪,最終目標(biāo)是使其儲能達(dá)5000千瓦小時的儲能飛輪。一個發(fā)電功率為100萬千瓦的電廠,約需這樣的儲能輪200個。

1992年美國飛輪系統(tǒng)公司(AFS)開發(fā)了一種用于汽車上的機(jī)-電電池(EMB),每個“電池”長18厘米,直徑23厘米,質(zhì)量為23千克。電池的核心是一個以20萬轉(zhuǎn)/分旋轉(zhuǎn)的碳纖飛輪,每個電池儲能為1千瓦小時,它們將12個“電池”放在IMPACT轎車上,能使該車以100千米/小時的速度行駛480千米。機(jī)-電電池共重273千克,若采用鉛酸電池,則共重396千克。機(jī)-電電池所儲的能量為鉛酸電池的2.5倍,使用壽命是鉛酸電池的8 倍,且它的“比功率”(即爆發(fā)力)極高,是鉛酸電池的25倍,是汽油發(fā)動機(jī)的10倍,它可將該車在8秒鐘內(nèi)由靜止加速至100千米/小時。

飛輪電池是90年代才提出的新概念電池,它突破了化學(xué)電池的局限,用物理方法實現(xiàn)儲能。眾所周知。當(dāng)飛輪以一定角速度旋轉(zhuǎn)時,它就具有一定的動能。飛輪電池正是以其動能轉(zhuǎn)換成電能的。高技術(shù)型的飛輪用于儲存電能,就很像標(biāo)準(zhǔn)電池。飛輪電池中有一個電機(jī),充電時該電機(jī)以電動機(jī)形式運(yùn)轉(zhuǎn),在外電源的驅(qū)動下,電機(jī)帶動飛輪高速旋轉(zhuǎn),即用電給飛輪電池“充電”增加了飛輪的轉(zhuǎn)速從而增大其功能;放電時,電機(jī)則以發(fā)電機(jī)狀態(tài)運(yùn)轉(zhuǎn),在飛輪的帶動下對外輸出電能,完成機(jī)械能(動能)到電能的轉(zhuǎn)換。當(dāng)飛輪電池輸出電的時,飛輪轉(zhuǎn)速逐漸下降,飛輪電他的飛輪是在真空環(huán)境下運(yùn)轉(zhuǎn)的,轉(zhuǎn)速極高(高達(dá)200000r/min),使用的軸承為非接觸式磁軸承。據(jù)稱,飛輪電池比能呈可達(dá)150W·h/kg,比功率達(dá)5000-10000W/kg,使用壽命長達(dá)25年,可供電動汽車行駛500萬公里。

抽水儲能

抽水儲能電站儲存能量的釋放時間從幾小時到幾天,綜合效率在70~85%之間。

水輪機(jī)的效率:現(xiàn)在的轉(zhuǎn)輪技術(shù)模型最高有95%,80-90年代的水輪機(jī)模型效率最高只90%。中、小型水輪機(jī)的效率可能只有75~80%左右。 大型水泵的效率大約在85~90%之間。

再考慮發(fā)電機(jī)效率98%左右??雌饋沓樗畠δ艿男室簿褪?0~80%左右。

超導(dǎo)儲能

超導(dǎo)儲能系統(tǒng)(SMES)利用超導(dǎo)體制成的線圈儲存磁場能量,功率輸送時無需能源形式的轉(zhuǎn)換,具有響應(yīng)速度快(ms 級),轉(zhuǎn)換效率高(≥96%)、比容量(1-10 Wh/kg)/比功率(104-105kW/kg)大等優(yōu)點,可以實現(xiàn)與電力系統(tǒng)的實時大容量能量交換和功率補(bǔ)償。

SMES 可以充分滿足輸配電網(wǎng)電壓支撐、功率補(bǔ)償、頻率調(diào)節(jié)、提高系統(tǒng)穩(wěn)定性和功率輸送能力的要求。

氫儲能

氫儲能在電力供過于求的時候采用電解水的方式獲得氫,然后低溫液態(tài)存儲起來,在需要的時候通過燃燒產(chǎn)生能量,氫也是燃料電池的主要燃料之一。目前氫能的生產(chǎn)成本是汽油的4~6倍,其運(yùn)輸、存儲、轉(zhuǎn)化過程的成本也都較化石能源高。有人提出利用太陽能,風(fēng)能水能發(fā)電電解水,真正實現(xiàn)新能源產(chǎn)生新能源,并達(dá)到儲存能量效果,真正實現(xiàn)“清潔能源的可持續(xù)利用”。


內(nèi)容來自百科網(wǎng)